Mesodermal defects and cranial neural crest apoptosis in α5 integrin-null embryos

نویسندگان

  • Keow Lin Goh
  • Joy T. Yang
  • Richard O. Hynes
  • Howard Hughes
چکیده

α5β1 integrin is a cell surface receptor that mediates cellextracellular matrix adhesions by interacting with fibronectin. α5 subunit-deficient mice die early in gestation and display mesodermal defects; most notably, embryos have a truncated posterior and fail to produce posterior somites. In this study, we report on the in vivo effects of the α5-null mutation on cell proliferation and survival, and on mesodermal development. We found no significant differences in the numbers of apoptotic cells or in cell proliferation in the mesoderm of α5-null embryos compared to wildtype controls. These results suggest that changes in overall cell death or cell proliferation rates are unlikely to be responsible for the mesodermal deficits seen in the α5-null embryos. No increases in cell death were seen in α5-null embryonic yolk sac, amnion and allantois compared with wild-type, indicating that the mutant phenotype is not due to changes in apoptosis rates in these extraembryonic tissues. Increased numbers of dying cells were, however, seen in migrating cranial neural crest cells of the hyoid arch and in endodermal cells surrounding the omphalomesenteric artery in α5-null embryos, indicating that these subpopulations of cells are dependent on α5 integrin function for their survival. Mesodermal markers mox-1, Notch-1, Brachyury (T) and Sonic hedgehog (Shh) were expressed in the mutant embryos in a regionally appropriate fashion. Both T and Shh, however, showed discontinuous expression in the notochords of α5-null embryos due to (1) degeneration of the notochordal tissue structure, and (2) non-maintenance of gene expression. Consistent with the disorganization of notochordal signals in the α5-null embryos, reduced Pax-1 expression and misexpression of Pax-3 were observed. Anteriorly expressed HoxB genes were expressed normally in the α5-null embryos. However, expression of the posteriormost HoxB gene, Hoxb-9, was reduced in α5null embryos. These results suggest that α5β1-fibronectin interactions are not essential for the initial commitment of mesodermal cells, but are crucial for maintenance of mesodermal derivatives during postgastrulation stages and also for the survival of some neural crest cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos.

Alpha5beta1 integrin is a cell surface receptor that mediates cell-extracellular matrix adhesions by interacting with fibronectin. Alpha5 subunit-deficient mice die early in gestation and display mesodermal defects; most notably, embryos have a truncated posterior and fail to produce posterior somites. In this study, we report on the in vivo effects of the alpha5-null mutation on cell prolifera...

متن کامل

Multiple Cranial Organ Defects after Conditionally Knocking Out Fgf10 in the Neural Crest

Fgf10 is necessary for the development of a number of organs that fail to develop or are reduced in size in the null mutant. Here we have knocked out Fgf10 specifically in the neural crest driven by Wnt1cre. The Wnt1creFgf10fl/fl mouse phenocopies many of the null mutant defects, including cleft palate, loss of salivary glands, and ocular glands, highlighting the neural crest origin of the Fgf1...

متن کامل

A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme.

Numerous human syndromes are the result of abnormal cranial neural crest development. One group of such defects, referred to as CATCH-22 (cardiac defects, abnormal facies, thymic hypoplasia, cleft palate, hypocalcemia, associated with chromosome 22 microdeletion) syndrome, exhibit craniofacial and cardiac defects resulting from abnormal development of the third and fourth neural crest-derived b...

متن کامل

tgfβ3 regulation of chondrogenesis and osteogenesis in zebrafish is mediated through formation and survival of a subpopulation of the cranial neural crest

Zebrafish tgfbeta3 is strongly expressed in a subpopulation of the migrating neural crest cells, developing pharyngeal arches and neurocranial cartilages. To study the regulatory role of tgfbeta3 in head skeletal formation, we knocked down tgfbeta3 in zebrafish and found impaired craniofacial chondrogenesis, evident by malformations in selected neurocranial and pharyngeal arch cartilages. Over-...

متن کامل

Morphogenesis of the head of a newt: mesodermal segments, neuromeres, and distribution of neural crest.

Segmentation of the mesoderm in the head of a newt embryo is revealed by scanning electron microscopy. By the end of gastrulation, the newt embryo is already segmented from one end to the other, with additional segments added later by the tail bud. This metameric segmentation appears long before the first "somite" can be seen in the late neurula by light microscopy. The six segments found in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997